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Recognition Object Challenge (ILSVRC)
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Overview of different CNN architectures Il

©

We will ground the evolution on ImageNet Large-Scale Visual
Recognition Object Challenge (ILSVRC)

Training set of 1.2M (732-1300 training samples per class) labelled
images from 1000 categories

50K validation set and 100K test set

Evaluation metric: Top-5 error rate
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Overview of different CNN architectures

o We will ground the evolution on ILSVRC

ILSVRC top-5 Error rate
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AlexNet (2012) \Il\

Buviutinshmined

@ 8-layer CNN: 5 Conv layers, 3 FC layers
@ 227 x 227 input
@ Max pooling, ReLU nonlinearity, LRN (not used anymore now)

Dr. Konda Reddy Mopuri dl - 9/ Evolution of CNN Architectures 4



AlexNet (2012)
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AlexNet (2012)

@ Implemented on GTX 580 GPUs (2 of them; 3GB of Memory each)

Figure from AlexNet paper by Kryzhevsky et al.
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AlexNet (2012) |Il|

et v b

@ Implemented on GTX 580 GPUs (2 of them; 3GB of Memory each)

ax 5 Max
ooling pooling

Figure from AlexNet paper by Kryzhevsky et al.
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AlexNet (2012) e
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ILSVRC top-5 Error rate
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ZFNet (2013) Il

@ A more worked-out AlexNet
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ZFNet (2013)

@ A more worked-out AlexNet
@ More trails on the AlexNet architecture that resulted in less error

o (11 x 11 stride 4) — (7 x 7 stride 2)
o Conv 3, 4, and 5 (384, 384, 256) — (512, 1024, and 512)
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ZFNet (2013)

image size 224 110 13
filter size 7
384 '\2‘56
stride 2 96 3x3 max c
3x3 max pool pool 4096 4096 class
stride 2 nort stride 2 units units softmax
\3‘ 55 ‘JI' 5
2 6
Input Image 36 256
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (i) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 - 6 - 256 = 9216 dimensions). The final layer is a C-way softmax
function, C being the number of classes. All filters and feature maps are square in shape.

Figure from Zeiler and Fergus, ECCV 2014
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VGG (2014) b

@ First architecture to have a principled design
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VGG (2014)

@ First architecture to have a principled design

Q o All conv: 3 x 3, stride:1, pad:1
o All max pool: 2 x 2, stride:2
o After pooling, double the channels

Dr. Konda Reddy Mopuri dl - 9/ Evolution of CNN Architectures 11



@
VGG (2014) L[]
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VGG (2014) Il
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@ Why Only 3 x 3 Convs?
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VGG (2014)

@ Why Only 3 x 3 Convs?
@ Case-1: Conv(5 x5, C — C)

o Parameters:
CxCx5x5=25C2
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VGG (2014)

@ Why Only 3 x 3 Convs?
@ Case-1: Conv(5 x5, C — C)

o Parameters:
CxCx5x5=25C?

o Flops:
CxHXxWxCxbxb=
25C2HW
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VGG (2014) ||'||
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® Why Only 3 x 3 Convs? @ Case-2: Conv(3x3,C — ()
@ Case-1: Conv(5b x5, C — () and Conv(3 x 3, C — C)

o Parameters:
CxCx5x5=25C?

o Flops:
CxHXxWxCxbxb=
25C2HW
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VGG (2014) UIIH

Bruviuntibirshrined

@ Why Only 3 x 3 Convs? @ Case-2: Conv(3 x 3, C — ()
@ Case-1: Conv(5 x5, C — (O) and Conv(3 x 3, C — (C)
o Parameters: o Parameters:
CxCx5x5=25C? 2x C xCx3x3=18C?
o Flops:
CxHXxWxCxbxb=
25C2HW
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VGG (2014) \IIH
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@ Why Only 3 x 3 Convs? @ Case-2: Conv(3 x 3, C — ()
@ Case-1: Conv(5 x5, C — (O) and Conv(3 x 3, C — (C)
o Parameters: o Parameters:
CxCx5x5=25C? 2x C xCx3x3=18C?
o Flops: o Flops:
CxHXxWx(Cx5hxb= 2XCOCXxHXW x(Cx3x3=
25C2HW 18C2HW
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VGG (2014)
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channels — computational cost is unchanged
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VGG (2014)

@ Halving the spatial dimensions (max pooling) and doubling the
channels — computational cost is unchanged
@ Case-1: C x2H x2W, Conv (3 x 3, C — (O)
o Memory: 4CHW, parameters: 9C?, Flops: 36 HW C?
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VGG (2014) Il
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@ Huge network (VGG-16) compared to AlexNet
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VGG (2014)

@ Huge network (VGG-16) compared to AlexNet
@ Memory: 1.9 — 48.6MB (25X)

@ Parameters: 61 — 138M (2.3X)

@ Flops: 0.7 — 13.6G Flop (19.4X)
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VGG (2014)

ILSVRC top-5 Error rate
30

20

19 layers

2010 2011 2012 2013 2014
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GooglLeNet (2014) |I.l|
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@ Efficiency was the focus of design

Figure credits:Medium.com and Anas Brital

Dr. Konda Reddy Mopuri dl - 9/ Evolution of CNN Architectures 17


https://medium.com/@AnasBrital98/googlenet-cnn-architecture-explained-inception-v1-225ae02513fd

GooglLeNet (2014) \Il\

Buviutinshmined

@ Efficiency was the focus of design

@ Reduce the parameters, memory and the compute requirements
(towards deployment)

Figure credits:Medium.com and Anas Brital

Dr. Konda Reddy Mopuri dl - 9/ Evolution of CNN Architectures 17


https://medium.com/@AnasBrital98/googlenet-cnn-architecture-explained-inception-v1-225ae02513fd

GooglLeNet (2014)

@ Efficiency was the focus of design

@ Reduce the parameters, memory and the compute requirements
(towards deployment)
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Figure credits:Medium.com and Anas Brital
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GooglLeNet (2014) \IIH

sy e

@ Stem architecture at the early stage — aggressive down-sampling

Figure credits: Medium.com and Anas Brital
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GoogLeNet (2014) IIﬁII

@ Stem architecture at the early stage — aggressive down-sampling
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Figure credits: Medium.com and Anas Brital

Dr. Konda Reddy Mopuri dl - 9/ Evolution of CNN Architectures 18


https://medium.com/@AnasBrital98/googlenet-cnn-architecture-explained-inception-v1-225ae02513fd

GooglLeNet (2014) \IIII\
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@ Stem architecture at the early stage — aggressive down-sampling
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@ From 224 x 224 to 28 x 28

o GoogleNet: Compute - 7.5MB, parameters - 124K, and MFlops - 418
o VGG-16: Compute - 42.9MB (5.7X), parameters - 1.1M (8.9X), and
MFlops - 7485 (17.8X)

Figure credits: Medium.com and Anas Brital
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GooglLeNet (2014)

@ Inception module: unit with parallel branches

Figure credits: Medium.com and Anas Brital
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GooglLeNet (2014)

@ Inception module: unit with parallel branches

@ Repeated through the architecture
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i {e
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Figure credits: Medium.com and Anas Brital
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GooglLeNet (2014)

@ Global Average Pooling (GAP) layer

Alexis Cook
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GooglLeNet (2014) I.l

@ Global Average Pooling (GAP) layer

@ Flattening results in huge weight matrices — GooglLeNet introduces
GAP layer

Alexis Cook
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GooglLeNet (2014) Iﬁl
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@ Global Average Pooling (GAP) layer
@ Flattening results in huge weight matrices — GoogleNet introduces
GAP layer

@ Collapses the spatial dimensions by computing the average (kernel
size = spatial dimensions of the last conv layer)
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Alexis Cook
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GooglLeNet (2014)

@ No more fully connected layers
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GooglLeNet (2014)

@ No more fully connected layers

@ One linear layer to predict the classification scores (feather light!)
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GooglLeNet (2014) |I.l|
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@ Auxiliary classifiers
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GooglLeNet (2014)

@ Auxiliary classifiers

@ Training using the gradients at the end of the network didn't work
well (too deep, gradient propagation was not robust)
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GooglLeNet (2014)

@ Auxiliary classifiers

@ Training using the gradients at the end of the network didn’t work
well (too deep, gradient propagation was not robust)

@ Hack: add auxiliary classifiers at intermediate locations to receive
loss/gradients

28'28*192 2828256 2828480 14*14°480 14*14°51 14*14*512 14"14'512

o EEEEEE

14"14°832 77832 77832 771024 1111024 II
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GooglLeNet (2014)

ILSVRC top-5 Error rate
30

20

19 layers 22 layers

2010 2011 2012 2013 2014 2014
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ResNet (2015)

@ Very important time for the DNNs
o Batch Normalization happened
o Depth increased by an order (10 — 150+)
o ILSVRC error almost halved from that of 2014
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ResNet (2015) e

@ Very important time for the DNNs T

o Batch Normalization happened
o Depth increased by an order (10 — 150+)
o ILSVRC error almost halved from that of 2014

ILSVRC top-5 Error rate
30

20

8 layers

18layers o) avers

152 layers

2010 2011 2012 2013 2014 2014 2015

o
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@
Training Deeper CNNs i
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@ When training the “deeper” CNNs, people observed that they were
worse than shallow ones

200
& 56-layer
‘g " 20-layer
o
g
0 I 2

3 7
iter. (le4)

Figure Credits: He et al. 2015
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@ When training the “deeper” CNNs, people observed that they were
worse than shallow ones

201

& 56-layer
‘g " 20-layer
o
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0 I 2

2 3 7
iter. (le4)

@ |Initial suspicion was the ‘over-fitting’!

Figure Credits: He et al. 2015
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Training Deeper CNNs

@ |Initial suspicion was the ‘over-fitting’!

@ However, it was due to the under-fitting

201 200
;\? < V\/L/\/-/\_\P
\g = S56-layer
5 10 § 10 20-layer
o0 5
k= 56-layer 2
g 8
S &
= 20-layer

0 1 P 3 4 5 3 0 1 2 3 4 5 6

iter. (le4) iter. (1e4)

Figure Credits: He et al. 2015

Dr. Konda Reddy Mopuri dl - 9/ Evolution of CNN Architectures 26



ResNet (2015)

@ Deeper CNNs should easily emulate the shallow ones (extra layers
could learn identity function)
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ResNet (2015) I.l
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@ Deeper CNNs should easily emulate the shallow ones (extra layers
could learn identity function)

@ This is not the case — some issue in the optimization!
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ResNet (2015)

@ Deeper CNNs should easily emulate the shallow ones (extra layers
could learn identity function)

@ This is not the case — some issue in the optimization!
@ Work on the architecture so that learning identity function gets easier
with additional layers
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ResNet (2015) \Il\

Buviutinshmined

@ Work on the architecture so that learning identity function gets easier
with additional layers

Yuanrui Dong
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ResNet (2015)

@ Work on the architecture so that learning identity function gets easier

with additional layers
@ ResBlock (residual block)

identity

Yuanrui Dong
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ResNet (2015)

@ ResBlocks help the gradient backpropagation

T relu
H({‘) F(x) + x
Fix) el Additive
I relu I “shortcut”
f
X X
“Plain” block Residual Block

Figure Credits: Dr. Justin Johnson, U Michigan
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ResNet (2015) HI.I
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@ ResNet is a stack of Resblocks

Figure credits: Dr. Justin Johnson, U Michigan
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ResNet (2015)

@ ResNet is a stack of Resblocks
@ Inspire from VGG and GoogleNet

Figure credits: Dr. Justin Johnson, U Michigan
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ResNet (2015) \I.l\

@ ResNet is a stack of Resblocks
@ Inspire from VGG and GoogleNet
@ Simple and regular design like VGG: each resblock has two 3 x 3 Conv

Y relu
F(x) + x
F(x) | relu
X

Residual block

Figure credits: Dr. Justin Johnson, U Michigan
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ResNet (2015)

@ Network has stages: first block of each stage halves the resolution
and doubles the channels
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ResNet (2015)

@ Network has stages: first block of each stage halves the resolution
and doubles the channels

@ Aggressive stem in the beginning (downsamples by 4X before the
start of the resblocks)
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ResNet (2015)

@ Network has stages: first block of each stage halves the resolution
and doubles the channels

@ Aggressive stem in the beginning (downsamples by 4X before the
start of the resblocks)

@ Eliminates the FC layers via GAP
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Figure credits: K. he et al., ResNets 92015)
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ResNet (2015)

@ ResNet-18

o Stem: 1 Conv
Stage-1 (C=64): 2 resblocks (4 Conv)
Stage-2 (C=128): 2 resblocks (4 Conv)
Stage-3 (C=256): 2 resblocks (4 Conv)
Stage-4 (C=512): 2 resblocks (4 Conv)
Linear
Top-5 error: 10.92 and GFlop: 1.8
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ResNet (2015)

@ ResNet-34

o Stem: 1 Conv
Stage-1 (C=64): 3 resblocks (6 Conv)
Stage-2 (C=128): 4 resblocks (8 Conv)
Stage-3 (C=256): 6 resblocks (12 Conv)
Stage-4 (C=512): 3 resblocks (6 Conv)

Linear
Top-5 error: 8.58 and GFlop: 3.6 (VGG: 9.6 and 13.6 respectively)
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ResNet (2015)

@ Bottlneck Residual block

256-d

ix1, 256

Figure Credits:Nushaine Ferdinand

Dr. Konda Reddy Mopuri dl - 9/ Evolution of CNN Architectures

35


https://towardsdatascience.com/using-hourglass-networks-to-understand-human-poses-1e40e349fa15

ResNet (2015)

@ Resnet-34 becomes ResNet-50 if we replace the plain resblocks with
bottleneck ones
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ResNet (2015)

@ Resnet-34 becomes ResNet-50 if we replace the plain resblocks with
bottleneck ones

@ More blocks at each stage result in ResNet-101 and Resnet-152
architectures
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Resnet (2015)

@ Resblocks have Batch Normalization layers
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3 x 3 Conv

Yashovardhan Shinde and Analyticsvidhya
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https://www.analyticsvidhya.com/blog/2021/08/how-to-code-your-resnet-from-scratch-in-tensorflow/

ResNet (2015)

ILSVRC top-5 Error rate
30

20

19 layers 22 layers

152 layers

2010 2011 2012 2013 2014 2014 2015
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Post 2015

@ 2016 Winners (Trimps Soushen): Multi-scale Ensemble models of
Inception, ResNets, WRN, etc.
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Post 2015

@ 2016 Winners (Trimps Soushen): Multi-scale Ensemble models of
Inception, ResNets, WRN, etc.

@ Improving ResNets: multiple parallel pathways of bottlenecks
(ResNeXt), Squeeze and Excitation Nets (SENet)

@ Densenets, Tiny Networks (MobileNets, ShuffleNets), etc.
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CNN Architectures: Summary

@ Initial families of architectures (AlexNet, ZFNet, VGG) — Bigger the
better!
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@ Initial families of architectures (AlexNet, ZFNet, VGG) — Bigger the
better!

@ GoogleNet emphasized on efficiency
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CNN Architectures: Summary

@ Initial families of architectures (AlexNet, ZFNet, VGG) — Bigger the
better!

@ GoogleNet emphasized on efficiency

@ ResNet enabled extreme depth
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CNN Architectures: Summary

@ Focus back on efficiency: improving accuracy w/o growing the
complexity
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CNN Architectures: Summary

@ Focus back on efficiency: improving accuracy w/o growing the
complexity

@ Deploy-able models: MobileNet, ShuffleNet, etc.
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CNN Architectures: Summary

@ Focus back on efficiency: improving accuracy w/o growing the
complexity

@ Deploy-able models: MobileNet, ShuffleNet, etc.
@ Neural Architecture Search (NAS)
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CNN Architectures: Summary |||I.l|||
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ILSVRC top-5 Error rate

30 152 layers 152 layers 152 layers

22 layers

20 19 layers

8 layers 8 layers

2010 201 2012 2013 2014 2014 2015 2016 2017
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